MF

    Book Cover

    A Verified Design of a Fault-Tolerant Clock Synchronization Circuit

    Series:

    Schneider demonstrates that many fault tolerant clock synchronization algorithms can be represented as refinements of a single proven correct paradigm. Shankar provides mechanical proof that Schneider's schema achieves Byzantine fault tolerant clock synchronization provided that 11 constraints are satisfied. Some of the constraints are assumptions about physical properties of the system and cannot

    NaN

    VOLUME

    English

    Paperback

    Schneider demonstrates that many fault tolerant clock synchronization algorithms can be represented as refinements of a single proven correct paradigm. Shankar provides mechanical proof that Schneider's schema achieves Byzantine fault tolerant clock synchronization provided that 11 constraints are satisfied. Some of the constraints are assumptions about physical properties of the system and cannot be established formally. Proofs are given that the fault tolerant midpoint convergence function satisfies three of the constraints. A hardware design is presented, implementing the fault tolerant midpoint function, which is shown to satisfy the remaining constraints. The synchronization circuit will recover completely from transient faults provided the maximum fault assumption is not violated. The initialization protocol for the circuit also provides a recovery mechanism from total system failure caused by correlated transient faults. Miner, Paul S. Langley Research Center ALGORITHMS; CIRCUITS; CLOCKS; FAULT TOLERANCE; SYNCHRONISM; CONVERGENCE; PROTOCOL (COMPUTERS); PROVING; SYSTEM FAILURES...



    Price Comparison [India]

      IN STOCK

      ₹1,452

      N/A



      In This Series



      Bestseller Manga



      Trending NEWS